Prepared for ASME Symposium, Philadelphia, Pa., Nov. 17-22, 1963 THERMAL CONDUCTANCE OF MOLYBDENUM AND STAINLESS STEEL 304 INTERFACES IN A VACUUM By R. D. Sommers and W. D. Coles N65-89007 E-2187 Lewis Research Center National Aeronautics and Space Administration. Cleveland, Ohio 119637 Symp, Philadelphia, 17-22 Nov. 1963 In recent years there has been a revival of interest in the thermal conductance of metallic contacts. The advent of the space age has in particular stimulated an interest in the thermal conductance of metallic contacts in a vacuum environment. This paper reports a series of measurements made on interfaces composed of molybdenum and stainless steel 304 surfaces in a vacuum of 10⁻⁶ Torr. When two metallic surfaces are placed in contact, they do not touch each other over the entire apparent area of contact because of the microscopic irregularities of the surfaces. The heat transfer across the interface will occur in the following modes: - (1) Metallic conduction - (2) Conduction through the material in voids, if any - (3) Radiation In a vacuum environment the second mode will essentially be eliminated, and it is evident that the thermal conductance will largely be determined by In most cases the amount of the extent of real metallic contact present. actual contact is a very small fraction of the apparent area of contact. Application of pressure to the interface will cause deformation of the microscopic irregularities, or asperities, and result in an increase in the fraction of real contact. The thermal conductance will thereby increase with increasing surface loading. #### EXPERIMENTAL PROCEDURE This paper concerns an experimental investigation of the thermal conductance of molybdenum and stainless steel interfaces over ranges of interface temperature from 200° to 1100° F and interface contact pressure from 80 to 800 psi in a vacuum of 10⁻⁶ Torr. The experimental apparatus is shown in Figs. 1 to 3. Thermal energy is supplied by means of induction heating to the heater head shown in Fig. 1. The heat flows along the cylindrical test shaft, across the test interface, and through the copper heat-flow meter and is removed by either air or water cooling at the bottom. The magnitude of the heat flow is determined by measuring the temperature gradient along the copper heat-flow meter. The heat-flow meter is a length of high-purity, oxygen-free copper for which the thermal conductivity is known. The thermal conductivity values used were taken from [1] and are presented in Fig. 4. The temperatures of the surfaces comprising the test interface are obtained by measuring the temperatures on either side of the test interface and extrapolating these temperatures to the appropriate surface. ¹ Numbers in brackets designate References at end of paper. The thermal conductance is calculated according to the following definition of the conductance: $$h = \frac{\dot{q}/A}{\Delta T_i}$$ where h is the thermal conductance, q is the heat-flow rate, A is the apparent contact area, and ΔT_1 is the temperature drop across the interface. The interface contact pressure is provided by loading of the test shaft from outside the vacuum region with the air cylinder shown in Fig. 1. The contact pressure is determined by measuring the loading force with a load cell placed between the air cylinder and the test shaft extension as shown in Fig. 1. During the course of the investigation, it was discovered that the O-ring seals around the test shaft extension, where it passed through the vacuum bell jar, were capable of exerting a fairly large frictional force along the axis of the test shaft. This O-ring friction was quite capable of supporting a load of 45 lb. A 45-lb load on the test shaft corresponds to an interface contact pressure of about 70 psi. Since the load measuring system, that is, the load cell, was not between the O-ring seals and the test interface, the O-ring friction was capable of introducing a ±70 psi uncertainty into the interface contact-pressure measurement. This situation was remedied by providing a "friction reliever" in the form of a pulsed hammer that applied two sharp blows to the test shaft extension every 30 sec. This action proved sufficient to relieve the O-ring residual forces nearly completely. Four contacts are investigated involving four combinations of surfaces, two molybdenum surfaces, Mo_1 and Mo_2 , and two stainless steel 304 surfaces, SS_1 and SS_2 . The characteristics of the various surfaces and combinations are presented in Table 1. The measurements for any particular interface were taken in the following sequence. Beginning at the lowest temperature, the lowest pressure was applied to the interface. Measurements were made at time intervals until an equilibrium situation was attained, at which time the contact pressure was raised to the next higher value while approximately the same average interface temperature was maintained. When the highest pressure had been reached, the temperature was raised and the measurements were taken through a decreasing sequence of contact pressure. The increasing and decreasing cycle of contact pressure, with temperature changes occurring at the contact-pressure extremes, was repeated until the highest temperatures had been reached. An equilibrium condition was considered to have been attained when the measured temperatures exhibited a change of less than 1° or 2° F over two or three measurement intervals. Measurement intervals were of 3- or 4-hr duration. A period of up to 12 hr was required to reach an equilibrium condition depending on whether a contact-pressure change or a temperature change had been effected. After a contact-pressure change, conditions leveled out in a time period of 5 to 6 hr. A change of temperature required the 12-hr period for equilibrium to occur. The thermal conductance data are presented in Tables 2 to 5 and Figs. 5 to 8. #### DISCUSSION OF RESULTS One of the most important factors governing the thermal conductance of any particular interface is the interface contact pressure. This is not surprising since, for any particular pair of surfaces, the contact pressure will to a large degree determine the extent to which the surfaces make "real" contact. The effect of surface material can be seen by comparing Figs. 5 and 6 for the molybdenum-molybdenum and SS 304 - SS 304 interfaces. The molybdenum interface displays a much higher thermal conductance than does the stainless steel interface at comparable contact pressures. The difference between the thermal conductance of the molybdenum interface and the stainless steel interface, approximately a factor of 5, is about the same difference that exists between the thermal conductivities of the two metals, which indicates that metallic conduction is perhaps the dominant mode of heat transfer. As further evidence for the domination of metallic conduction, Fig. 5 for the SS 304 - SS 304 interface presents the thermal conductance for radiation only. This curve was obtained by separating the surface approximately 1/16 in. and measuring the heat flow across the resulting gap. From Fig. 5 it is quite evident that the thermal conductance for radiation is very small compared to the thermal conductance when the surfaces are in contact. The thermal conductance of the molybdenum-molybdenum and SS 304 - SS 304 interfaces tends to increase with increasing interface temperature. The effect of contact pressure is more pronounced at the higher interface temperatures. Both of these effects are felt to be associated with the decline of material strength at higher temperatures. Loss of material strength calls for an increase in "real" area of contact to support the applied load. An increase in "real" contact area has the effect of increasing the interface thermal conductance. In view of the behavior of the one-metal interface configurations shown in Figs. 5 and 6, the behavior of the mixed-interface configurations represented in Figs. 7 and 8 is somewhat surprising. Two contact combinations are illustrated in Figs. 7 and 8, in which the heat-flow directions and the surfaces comprising the interfaces are different. Both cases show a trend for the thermal conductance to decrease with increasing average interface temperature. For the molybdenum-steel interface this trend was reversed at the higher interface temperatures, whereas for the steel-molybdenum interface the decreasing trend continued to the highest temperatures attainable with the apparatus. It might be well to emphasize that the interface of Fig. 7 is not the same as the interface of Fig. 8 with just the heat-flow direction changed. The reasons for the decreasing trend in the data shown in Figs. 7 and 8 are nebulous. Since the thermal conductance of an interface is a strong function of the manner in which the surfaces of the interface make contact, and since the behavior of the like interfaces gave no indication of the behavior of the mixed interfaces of Figs. 7 and 8, the explanation probably is connected somehow with the dissimilar natures of molybdenum and stainless steel 304. It is of interest to note that Barzelay et al. [2] report the thermal conductance of some stainless steel 416 and aluminum joints. The thermal conductance tended to decrease with increasing average interface temperature. This effect was attributed by them to warping of the materials, particularly the SS 416, which severely affected the surface matching at the interface. The overall configuration of the present test is similar to that of [2]. Qualitatively the results in the cases of molybdenum - SS 304 configurations in this experiment are similar to SS 416 - aluminum results of [2]. A tendency for the thermal conductance to decrease with increasing average interface temperature was observed in both cases. Further, the thermal conductance is lower when the heat flows from the stronger material to the weaker than when the heat flows from the weaker material to the stronger. This last effect is probably associated with the temperature dependence of the tensile strengths of the materials. If warping of the stainless steel were the major cause of decreasing thermal conductance with increasing temperature, it would be expected that an interface composed of two stainless steel surfaces would also exhibit some tendency for the thermal conductance to decrease with increasing temperature. This was not the case for the stainless steel 416 interfaces of [2] or the stainless steel 304 interfaces of the present tests. Even though stainless steel is common to the present investigation and that of [2], it is perhaps more significant that the mixed-interface configurations of the present tests and those of [2] involved two materials of very different physical properties. The tendency of the thermal conductance to decrease with increasing temperature in the mixed-interface configurations could, perhaps, be due to a reduction in the number of contact sites brought about by the different reactions of the surface materials to temperature changes. ### REFERENCES - 1. C. F. Lucks and H. W. Deem, "Thermal Properties of 13 Metals," Am. Soc. for Testing Materials, Special Tech. Pub. 227. - 2. M. E. Barzelay, Win Nee Tong, G. F. Holloway, "Effect of Pressure on Thermal Conductance of Contact Joints," NACA TN 3295. ## TABLE 1. - SURFACE AND INTERFACE ### CHARACTERISTICS # (a) Surface characteristics | Surface | Material | Surface
roughness,
µ in. | Surface
area,
sq in. | |-----------------|--------------------|--------------------------------|----------------------------| | Mol | M olybdenum | 16
 | 0.6207 | | Mos | Molybdenum | | .8012 | | ss _l | SS 304 | | . 69 40 | | SS ₂ | SS 304 | | .7850 | ## (b) Interface characteristics | Configuration | Heat-flow
direction | Apparent contact area, sq in. | |----------------------------------|--|-------------------------------| | ss ₁ -ss ₂ | SS_1 to SS_2 | 0.6940 | | ss ₁ -mo ₂ | \mathtt{SS}_1 to \mathtt{Mo}_2 | . 7353 | | Mo _l -Mo ₂ | $\mathtt{Mo}_\mathtt{l}$ to $\mathtt{Mo}_\mathtt{2}$ | . 6207 | | Mo _l -SS ₂ | \mathtt{Mo}_1 to \mathtt{SS}_2 | . 6207 | TABLE 2. - THERMAL CONDUCTANCE DATA FOR STAINLESS STEEL 304 - STAINLESS STEEL 304 INTERFACE [Ambient pressure, 10-6 Torr; surface roughness, 16 µ in.] | | | - 10 - | | |---|--|--|--| | Interface conductance, h, Btu/(hr)(sq ft)(°F) | 300
319
340
352
370
432
414 | 136
153
163
159
192
209
235 | 81
104
114
126
136
154 | | Average
interface
temperature,
Ti, | 353
415
460
609
702
800
834 | 367
415
489
533
670
740
886 | 365
504
670
763
876
903 | | Interface temp-
erature
difference, ΔT_{4} , or | 97
136
126
172
194
200
215 | 173
205
228
241
315
303
356
365 | 250
311
392
437
551
551
545 | | Surface temp-
erature,
T2,
oF | 305
347
397
523
605
700
726 | 280
313
375
413
512
590
648 | 240
348
474
544
601
628 | | Surface temp-
erature,
Tl,
oF | 402
483
523
695
799
900 | 453
518
603
654
827
893
1004
1065 | 490
659
866
981
1152
1179 | | Heat flow, q'/A, Btu/(hr)(sq ft) | 29,100
43,450
42,900
60,600
71,800
86,400 | 23,600
27,350
37,120
38,270
60,400
63,450
75,400 | 20,200
32,350
44,670
55,100
75,200
80,400
83,700 | | Contact pressure,
psi | 765 | 280 | | TABLE 2. - Concluded. THERMAL CONDUCTANCE DATA FOR STAINLESS STEEL 304 - STAINLESS STEEL 304 INTERFACE [Ambient pressure, 10^6 Torr; surface roughness, 16 μ in,] | Interface
conductance,
h,
Btu/(hr)(sq ft)(°F) | 21,5
35,1
36,5
41,9
66,8
55,0 | 3, 97
4, 19
7, 51
6, 56 | |---|---|--| | Average
interface
temperature,
Ti, | 368
394
512
603
683
758 | 381
483
571
670
736 | | Surface temp- surface temp- erature, erature, T_{1} , T_{2} , difference, of ΔT_{1} , ΔT_{1} , ΔT_{1} , | 428
408
530
602
677
835 | 581
673
866
1049
1132 | | Surface temperature, | 154
190
247
302
344
455 | 90
96
138
146
170 | | | 582
598
777
904
1021
1326 | 671
770
1004
1195
1302 | | Heat flow,
\$\bar{q}/A_f\$
Btu/(hr)(sq ft) | 9,220
14,340
19,390
25,200
29,220
40,480
45,850 | 2,308
2,820
6,505
6,880 | | Contact pressure,
psi | 8 | No contact, surfaces separated by 1/16 in. | - 11 - TABLE 3. - THERMAL CONDUCTANCE DATA FOR MOLYBDENUM - STAINLESS STREEL 304 INTERFACE E-2187 [Heat flow from Mo to SS 304; ambient pressure 10⁻⁶ Torr; surface roughness, 16 µ in.] | Interface conductance, h, Btu/(hr)(sq ft)(°F) | 100.5
95.6
80.3
78.3
87.0
95.2 | 72.6
69.8
53.8
54.5
60.9 | 49.1
47.3
42.9
41.5
45.6
54.4 | 25.1
26.8
31.8
30.2
27.9
35.6 | |---|--|--|--|---| | Average
interface
temperature,
Ti, | 246
325
472
562
600
725
835 | 263
238
490
569
609
727
809 | 281
356
500
575
640
730
832 | 313
515
588
662
721
802 | | Interface temperature difference, $\Delta \Gamma_{i}$, $\Delta \Gamma_{i}$, | 168
250
441
520
560
651
681 | 214
301
514
601
641
745
806 | 265
358
555
650
699
811
865 | 336
613
687
755
822
9 5 5 | | Surface temperature, | 162
200
251
302
320
400
495 | 157
187
233
269
289
355 | 148
177
222
250
290
324
400 | 145
208
245
285
310
375 | | Surface temperature, Tl, OF | 530
450
692
822
880
1051 | 372
488
747
870
930
1100
1212 | 413
535
777
900
989
1135
1265 | 481
821
932
1040
1132
1330 | | Heat flow,
\$\delta/A_f\$ Btu/(hr)(sq ft) | 16,900
23,950
35,400
40,700
49,200
62,000 | 15,600
21,050
27,660
32,750
39,100
46,800
58,400 | 13,000
16,900
23,850
26,900
31,800
38,000
47,000 | 8,440
16,450
21,900
25,720
23,000
34,100 | | Contact pressure, psi | 765 | > 280 | 220 | 8 | TABLE 4. - THERMAL CONDUCTANCE DATA FOR MOLYBDENUM - MOLYBDENUM INTERPACE [Ambient pressure, 10-6 Torr; surface roughness, 16 µ in.] | | - 13 - | |---|---| | Interface conductance, h, (hr)(sq ft)(°F) | 1,527
1,500
1,663
1,745
2,152
2,116
2,915
1,045
1,250
1,250
1,585
1,929 | | Average
interface
temperature,
Ti, | 309
419
528
641
741
792
858
922
1042
230
329
443
560
663
772
820
868
947 | | Interface temp-
erature
difference,
\Lij
of | 53
50
89
104
102
102
98
113
115
117
96
117
96
117
117
117 | | Surface temperature,
T2;
oF | 292
394
484
484
51.7
589
690
745
865
984
402
482
510
510
590
743
781
850 | | Surface temp-
erature,
Tl, | 325
444
573
573
693
792
841
916
978
1100
247
362
484
599
606
731
854
897
955
1024 | | Heat flow, ${4/k_y \over 6/k_y}$ Btu/(hr)(sq ft) | 50,400
75,000
148,000
105,400
181,500
236,800
236,520
295,300
28,780
48,680
71,800
142,100
170,000
205,100
223,000
223,000
223,000
223,000
223,000
223,000
223,000
223,000 | | Contact pressure, psi | 380 | E-2187 TABLE 4. - Concluded. THERMAL CONDUCTANCE DATA FOR MOLYBDENUM - MOLYBDENUM INTERFACE [Ambient pressure, 10⁻⁶ Torr; surface roughness, 16 µ in.] | | | - 14 - | |--|--|--| | Interface conductance, h, Btu/(hr)(sq ft)(P) | 535
601
735
662
727
727
854
836
902
939
1,085 | 142
145
168
177
179
2 05 | | Average
interface
temperature,
OF | 351
466
567
582
690
779
834
836
956 | 238
486
622
803
981
1099 | | Surface temp- Surface temp- erature, erature, $T_{\rm L}$, $T_{\rm CF}$ difference, oF $\Delta T_{\rm L}$, | 86
116
183
144
218
224
250
275 | 157
346
556
692
83 0
886 | | Surface temperature,
T2,
OF | 308
408
475
510
581
667
709
760
819
926 | 16 0
313
344
457
566
656 | | | 394
524
658
654
799
891
1012
1092
1202 | 51.7
659
900
11.49
1.596
1.542 | | Heat flow,
q/A
Btu/(hr)(sq ft) | 46,000
69,800
134,600
95,400
159,500
191,400
209,000
227,200
256,200 | 22,300
50,300
96,100
122,700
148,500 | | Contact pressure,
psi | 220 | 8 | TABLE 5. - THERMAL CONDUCTANCE DATA FOR STAINLESS STEEL 304 - MOLYBDENUM INTERFACE E-2187 [Heat flow from SS 304 to Mo; ambient pressure, 10^6 Torr; surface roughness, 16 μ in,] | 1 | · · · · · · · · · · · · · · · · · · · | | | | |--|---|---|---|-----------------------------------| | Interface
conductance,
h,
Btu/(hr)(sq ft)(°F) | 706.0
731.0
658.0
680.0
602.0
472.0
460.0 | 371.0
391.0
370.0
321.0
350.0
270.0 | 247.0
275.0
267.0
254.0
276.0
223.0 | 157.0
115.0
122.0 | | Average
interface
temperature,
T ₁ , | 273
289
345
359
462
595
832
894 | 319
398
503
637
700
847 | 343
435
559
682
758
865 | 671
862
994 | | Interface temperature difference, | 57
56
80
84
124
198
230
250
258 | 90
126
180
264
280
423
514 | 116
163
223
305
328
470
525 | 366
485
518 | | Surface temperature, T2, OF | 244
261
304
317
400
496
540
650 | 274
335
411
505
560
633
687 | 280
354
447
530
530
630
698 | 488
62 0
7 35 | | Surface temperature, Tl, | 301
318
385
402
524
694
770
1014 | 364
461
591
769
840
1056 | 396
517
670
835
922
1100
1223 | 854
1105
1253 | | Heat flow,
\$\display(A)\$ Btu/(hr)(sq ft) | 40,240
40,970
52,990
57,200
74,740
93,380
105,691
121,820
122,140 | 53,450
49,250
66,790
84,990
97,840
114,410 | 28,730
44,950
59,600
77,580
90,000
105,140
97,950 | 50,450
56,000
63,410 | | Contact pressure
psi | 765 | 380 | 520 | 8-> | Fig. 1. - Thermal conductance apparatus. Fig. 2. - Thermal conductance apparatus, external view. Fig. 3. - Thermal conductance apparatus, view of test section. Fig. 4. - Thermal conductivity of copper (ref. 1). Fig. 5. - Thermal conductance of stainless steel 304-stainless steel 304. Ambient pressure, 10^{-6} Torr; surface roughness, 16 μin . Fig. 6. - Thermal conductance of molybdenum-molybdenum. Ambient pressure, 10^{-6} Torr; surface roughness, $16~\mu in$. Fig. 7. - Thermal conductance of molybdenum-stainless steel 304 (heat flow from molybdenum to stainless steel 304). Ambient pressure, 10-6 Torr; surface roughness, 16 μ in. Fig. 8. - Thermal conductance of stainless steel 304 and molybdenmum heat flow from SS 304 to molybdenmum surface roughness $16\mu\text{in.;}$ ambient pressure 10^{-6} Torr.